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Abstract

An implementation, using Gaussian LU decomposition

with row interchanges,of Stiefel's exchange algo-

rithm for determining a Chebyshev solution to an
overdetermined system of linear equations is pre-
sented. The implementation is computationally
more stable than those usually given in the 1lit-
erature. A generalization of Stiefel's algorithm

is developed which permits the occasional exchange

i

of two equations simultaneously. Finally, some

experimental comparisons are offered.
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1. Introduction

The problem of finding a vector X = (il,..., in) which solves an

overdetermined system of equations

n
ri(x) = ;E; 8y 4%y - d =0 (i=1,..., m; where m> n)

in the sense that
LN TE SN

for any x ¢ En is treated by Stiefel in [1). Such an X is called a

Chebyshev or minimax solution to the system.
r.4

Given an overdetermined system of linear equations Ax = d whose
matrix of coefficients satisfies the Haar condition (each n Xxn sub-
matrix is nonsingular), Stiefel presents in [1] an algorithm called the

exchange method for finding a Chebyshev solution. In a later paper,

[2], the exchange method is shown to be equivalent to the simplex method
applied to a suitable linear programming problem.

In this regard, Stiefel suggests the use of techniques drawn from
the simplex method fer the implementation of his algorithm. These
techniques are characterized by their use of Jordan elimination, for the
most part without row or column interchanges to pick the most advanta-
geous pivots, for solving linear equation systems which arise during the
computation. These methods are fast but computationally unstable. In
this paper we propose a computational scheme based upon the more stable
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method of Gaussian LU-decomposition using row interchanges. Attention
H is paid to the peculiarities of the exchange method to make computation

as fast as possible.

Afterwards a generalization of Stiefel's algorithm is presented
which permits the occasional exchange of two equations at once.
Finally some experimental comparisons of selection rules for use

l i with the exchange method are tabulated.

! ¢ 2. Background Theory

[’ There is a full treatment of the theory and the exchange method in

Chapter 2 of [9]. (The exchange method is called the ascent algorithm

in this work.) We therefore confine ourselves in this section and the
next to a statement of pertinent results, omitting proofs.

According to corollary 7.4.7., page 410, of (4], eny overdetermined

[t

system of linear equations has a Chebyshev solution. The following

lemma and theorem serve to characterize these solutions.

-

Lemma: Let B = [bij]'be & p Xq matrix with rows Bj,..., Bp .

[ —

There is a vector y = (yl,..., yq) such that

]
L 2

q
b <0 for all i=l,...
;1 i:jyj ) » P

P

if and only if O # ; 0131 for all nontrivial choices of
=]

of nonnegative scalars cl,..., ap .

This lemma is a special case of corollary 6, page 115, of [5].
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Let Ax = d be an overdetermined system of m linear equations in

n unknowns. For any vector x = (xl,... ’ xn), denote the residuals

n

Let A, be the i*  row of the matrix A .
Given any fixed vector, v = (vl,... s vn), we may assume with no loss

of generality that the equations have been ordered and numbered so that

o F ] = I ] = e = IR ] > I (12w 2 1m0 1

where lSkSm.

Theorem: There is a vector 2z for which

max max
1<ci<n T3 < 14 73 (VD)
k
if and only if O # _.Lgl v, sgn(ri(v))A‘,L for
all nontrivial choices of nonnegative scalars

wl’-'c, wk

For the purposes of the exchange method we restrict our attention
henceforth to overdetermined systems of m 1linear equations in n un-
knowns, Ax = d, for which rank(A) = n .

To begin, suppose that m = n+tl . There is no loss of generality in
assuming that the equations have been ordered so that the first n rows,
Al" ‘e An’ of A are linearly independent. Thus, scalars >‘1""’ }‘n+l
can be found with A .. # O such that

e I Yy ey
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— = s =

n+l
0: kA .
£, Mhs

n+l

)NRYLH
=1 1
Denoting sgn(ki) by s, set €= - =, 2.l solve the system

A
N

Al X, dl 5,
. : =1 . + ¢ . .
An *n dn ®n

n
So ri(x)=;] aijxj'dissi‘ for i =1,...yn.

Furthermore, rn+l(x) = as can easily be shown.

5
n+1®?

Therefore, sgn(ri(x)) =8, sgn(e) for all i .

n+l EEI ' |
But 0= AA = A, Us,A,
igl ii = p AL Bl
nt+l n+l

And so O = sgn(e) O = 12-:1 |ki|si sgn(e)A, = 121 I)\ilsgn(ri(x))A:l .

Hence, by the preceding theorem, x = (xl,..., xn) is a Chebyshev solu-
tion for the given system. (For an alternate discussion of (n¥l1) x n
systems see [6].)

Returning to the general case (m > n+l), suppose for some set of
n+l rows of A the first n of which are linearly independent (with

complete generality, the first n+l rows of A) we construct the

-

7.~
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Chebyshev solution x as above and Iind that, under correct ordering

of equations n+2 through m,
lrl(x)l ... m |rn+l(x)| > |rn+2(x)| > .00 > |rm(x)| .

Then x 1is a Chebyshev solution to the full given system.

We further note that the value

lel = (g 17 (0] = ey ()]

inf max
must be greater than the value e ¥EJSP+1IrkJ(Y)' for any other

collection of n+l rows Ak pecey Ak from the matrix, since
1 n+l

inf max

y lSJSn-l-l IrkJ (Y) I 5 lsr;;.xn*,l | rkJ (x) l (x as above)

= l;:;mhi(x)l = |‘| '

Following the convention put forth in [1], any subsystem

= - p - p -
A z e |
A Il
A z d
j'n+1 n in+l
- - — - L -
>

— o cmep——— - F'Y?'l.-
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i
of the given system with rank fL =n will »e called a ref-
A
in+l
erence subsystem, and the rows Ai gevay A,1 will be called a refer-
1 n+l

ence set. If x = (xl,..., xn) is a Chebyshev solution to a reference

O bsystem, the value.

inf max
le] = jr, X)|= oo = |, (x)] = lx, ()|
| ¥l 1ne1 yeg? 1SISnHlT

will ve called the reference deviation for the refercnce'subsystem. It

i *..quely determined by the reference subsystem.

1. The Exchange Method

-

Sti=fel's algorithm consists of starting with a reference subsystem
a.'d modifying it one equation at a time so as to increase the refercnce
Z2eviation by each change. Each modification proceeds as follows:

We may assume that Al""’ An+l i1s a reference set. Let

X = (xl,..., xn) be a Chebyshev solution to the corresponding reference

suv~vatem computed as above. So we have ¢, Apreees ln+1 which satisfy

a) Y A\A =0
A MY
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c) ri(x) =s5¢ for i=1,..., ntl,
vhere s, = sgn(ki) .
If x 1is not a Chebyshev solution to the full given system, then by

the discussion in the previous section, there is an ag{n+2,..., m}

for which Ira(x)l > |le] - Let P12 9 Ppel be scalars for which

‘ ?E?
> A = p A .
o T
In order to proceed, we impose
Condition 1: A $0 forall i=1,..., ntl .

If this holds, let Be{l,..., n+l} be such that

%% _ max Zu°P4
hg IS A

vhere o = sgn(ra(x)), and s = sgn(e) »

Now impose
Condition 2: Al,..., Aa-l’ Aa+l""’ An+l’ Aa are a reference set.

We form a Chebyshev solution x' = (xi,..., xﬁ) to the reference subsystem

r - - -—
BN 4
A . d
B-1 = B-1 in the usual fashion,
@a+1 ) 9p+1
L] z L]
A d
Ciaky @
: 7

e ———— T —— —
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[ = -a & : - ‘: 1

— [ = s
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producing ¢', ki:---: )‘é-l’ )‘é'*l'".’ "r'l*'l’ l& such that

ntl
a') Z A Ay +)‘c'rAa=o
i=1
ifp
rﬁl
My e
= ii
bl) ‘v @ - i

ifs
el + 3 Il
k' + x!
o El d

ife

c') r (x ) == for i=1,..., B-1, 8+l,..., ntl, o

i’
] = ] .
where si sgn() { )

We further have

Pal. P4C
)\i = GX )‘i [_ﬂ_a__i_g] (i=1,..., n+l; iﬂ) .

W

(Note that, by the choice of 8, the product of the term in brackets

with s = sgn(e¢) 1is nonnegative.)

Furthermore,

A
if K = |x|+k§l lxk and c-%“-'-,
kys

it can readily be shown that

et = clz ()] + Qc)lel -
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It is important to note that, if condition 1 1is satisfied by the
second reference set (i.e., \j #0 for i=l1,..., p-1, p+l,..., n+l, a),
then ¢> O . Therefore |¢'| > lel, since lra(x)l > |lel - The
strictness of the inequality |¢'| > |¢| implies, by a simple contra-
diction argument, that if an initial reference set is chosen and subse-
quently modified as above by exchanging successive non-reference set
rows of the matrix A for rows in the reference set, and if conditions
1 and 2 hold at each exchange, the process must converge upon a

Chebyshev solution for the full system.

4. Jordan Elimination

An excellent example of an implementation of the exchange method
which uses Jordan elimination is given on page 50 of [9].
Briefly, given indices {il,..., in+l] c {1,..., m}, numbers

kl:-o-: kn+l are found so that

and

n+l

Setting s, = sgn(xk) for k=l,..., n+l, the matrix

k
B
Af o o O A’f
1 n+l
C =
5 | Sanl
9

B Jon = ke o TR —_ ' — —~ T —_— e e ———
42 e et o] y - W) . .
JR—
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is formed using a sequence of n+l pivot operations (Jordan elimination

{ {I steps).
i Each exchange step, then, involves forming

i [X greey X C]= [d seeey d ]C)
1 n il in+l
computing
L
! n+l
[ ‘- r, = 1<§1 8%y - 4y for all J;éil,..., 14
i {
, ‘ selecting « so that lrdl = max, and forming ,L‘: ‘
[ ess ]= [a oo a Sgn(r )]CTO
pl’ ) pn+l d,l, ) a’n’ o
The last column of C has the form fonet
LR .‘4
'. %
- — - &
_ xl/G o
=
- ka/G ‘:1
L)‘nﬂ/G_ ’
!
* where
1
- rEl l ,
G = A .
k=1 K

Hence, B 1is selected as an index for which

I
B

10

sNpd . =~ e A X {

N et e 3 -~ et e . e
v



T

sgn(zb) sgn(e) pB/cB,n+l = max .

An appropriate pivot operation on C ends the exchange step.

The Ak can be found in

3
%— + 2n2 +-§3 +1

operations (counting only multiplications and divisions), and the initial
3

computation of C requires an additional n” + 5n2 + n operations.

In each exchange step the quantities

xl,..., xn+l, (- ¥} pl,oco, pn+1

require 2n2 + 4n + 2 operations to compute, and the updating of C
demands an additional n2 +2n + 1 operations. Hence, k exchanges

may be carried out with

3
e R R DU |

operations.

While row and column interchanges can be permitted during the
initial sequence of Jordan elimination steps which forms C, so that
pivot elements of largest possible magnitude can be selected, no pivot
choice is possible during the subsequent updatings of C . For simple
examples of the danger implicit in this fact see [10,11]. The danger

is studied at greater d:pth in [3,7,8].

11
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5. LU Decomposition

Starting from any reference subsystem of the given overdetermined
system, the exchange method produces a new reference subsystem at the

cost of solving three nonsingular sets of n+l linear equations:

P = rl
PTX = r2
Pp = rj .

The vector ry is given, but Iy depends upon ) and rj depends
upon x . If three such systems of equations were given in isolation,
the general method of solution would consist of making an accurate

LU decomposition of P using Gaussian elimination and backsolving six
triangular systems of linear equations. This can be done with

52 + Un? 4 0(n)

3
operations. With Stiefel's algorithm, however, this price need not be
paid at every exchange. The matrix P', derived from P by one
exchange, differs from P only in its Bth column. If column inter-
changes are not permitted in computing LU decompositions, then the
decomposition, L'U', of P' is identical in certain portions to the
decomposition, LU, of P, affording a saving of work. Furthermore,

pivotal selection using row interchanges can be allowed. While an

example of a matrix is given in [7] for which this strategy is poor,

12




3
3

it is the strategy commonly used and is almost always stable in practice
(e.g., see comments to this effect in [3] and [8]). 1In any event
it is superior to the strategy of making no pivot selection.

The work done in carrying out k exchange steps, involving columns

’1""’ ’k of P, can be cut to

3
(k + 1)(-%— + b + n) -.r‘_;;_l(hk +1) +Z_k__;_19

k
+

Wil

k Kk
3 2 13
By - (n+3) 2 i+ (@n+3)) B

operations.

For example, if Bl = .. = Bk =’§1 » this becomes

(k + 2)’3‘2 + G + 4)n® + o(n),

roughly half the work that would be required if no advantage were taken

of the similarities between P and P' .

6. Detailed Outline of an LU Implementation

1. Select ntl indices {il’ csey in"'l] S {l, ceey m] so that the

matrix
P -
A 8
4 i,
P= . X
A d
1 ot |
-
13
s, g TRl
A S, Y \
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2.

is nonsingular. If this cannot be done, terminate with an
appropriate indication. The user may then check whether the

system Ax = d can be satisfied exactly.

Perform the Gaussian reduction of PT into the product of a
unit lower triangular matrix L and an upper triangular matrix
U . All information about L and U can be stored in the
space initially occupied by PT plus one vector (for inter-
change information). In each column the element of largest
megnitude on or below the diagonal is to be used as the pivot.
If the LU decomposition of a matrix differing from PT only
in the Bth column is available, one can save computation by
using the first PB-1 columns and (as pointed out by W. Kahan
of Toronto) the upper-right-hand (B-1) X (n-f) submatrix of
this decomposition as the corresponding segments of the decom-

position of PT . UIf rank(PT) < n+l, terminate.

Solve

A A 0
Pl | - w]t ] =]
xn+1 xn+l _g .

This requires the forward-solution of

Lv =

H OO

14
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o)

c/"‘

P

P —
»

followed by the back-solution of U\ = v . (Permutations ;
due to the row interchanges of step (2) are ignored in the i
remainder of the outline). If vl,..., vn are avallable from
a forward-solution involving an L whose first f-1 columns
are identical with those of the matrix L being used here,
only vB,..., vn need be computed. If any Ki is zero,

terminate.

L, Set 1

n+l i'

¢ =1/ i: lkil .

i=1

If ¢ 1is less than any value of ¢ previously computed for

the current data, go to step (9). | i

5. Solve .
-
- i
sgn(x,) | T
Px:‘ . 'Y

sgn(x .. )| -
n+l

X will turn out to be -1. o
n+l 3
6. Compute
)
r,(x) = a,x -d
J L S
15
‘“\s:_y?‘»“" P - - vv «
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10.

for each
e 1)

Let o« be an index for which lrd(x)l is paximal. If
Ird(x)l < e, then (xl,..., xn) is a candidate as the

Chebyshev solution of Ax = d; go to step (10).

T T th
(o

solve Py = A column of AT) .

Find Bc{l,loo, n+l} sO that

;E sgn[r_(x}]

is maximal. Replace the set of indices fi,,..., in+1} by

{il,uou, ia-l) a’ iB+1’ono, in+l} .

T

Replace the Bth colum of P~ by A: . Go to step (2).

Restore the preceeding set of indices {il,..., 1n+1] and

recover the preceeding LU decomposition.

Iteratively refine the solution to the system

sgn(\,)
Px =¢ E 1
sgn(\ ;)
16
o _ - :
S R il + —-—
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according to the scheme given on page 121 of [3]. (The con- |

vergence of this refinement process is established in (12]). [
Check the residuals rJ(x) for

Jﬁ{il, e in+l‘ g

If

ira(X)| = m;" IrJ(X)l < ¢

then give [xl,..., X ]T as the Chebyshev solution. If this

n+l
residual check is not successful, but the refinement process
has been carried out before and the last refined value of ¢
is greater than the current refined value of ¢, return the

last refined values of xl,..., xn as a doubtful solution.

Otherwise return to step (7).

T. Remarks on the Qutline

We have ignored scaling strategies in programming our implementation.

Step (10) serves to improve the final values of ¢, Xppeees X o
It is usually performed only once. 1t is not uncommon to produce values
for ¢, Xyoeees Xg which are correct substantially to full machine
precision; i.e., compare runs A and D in the appendix. The decisions

made in step (10), after the refinement, have been included as an attempt

to supply the Chebyshev solution for the reference subsystem having the

17
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.

largest reference deviation in those infrequent cases where the test

max
JE{ipseees Ly lrd(x)l e

consistently fails to be satisfied.

Note that the LU decomposition of PT is used to solve the system
of equations Px = ¢ sgn(\) (step 5). In [3] it is shown that the
computed solution to Ax = b via LU decomposition is the exact solution
to (A + K)x =D, where a bound on IIKII°° can be placed. It is easily
shown that the computed solution to A?y = d via the LU decomposition

of A is the exact solution to (A + H)y = 4, where the same bound

pertains to IIHII°° .

8. Algol 60 Description

procedure Chebyshev (A,d,h,m,n,refset,epz,insufficientrank, zerolambda);

value m,n; integer m,n; real array A,d,h;

integer array refset; real epz; label insufficientrank, zerolambda;

begin

real procedure ipr (ii,ff,uu,aa,bb,cc);

value If,uu,cc; real aa,bb,cc; integer ii,2f,uu;

begin comment single-precision inner-product routine;

real sum;
sum := cc;
for ii := 44 step 1 until uu do sum := sum + aaxbb;

ipr := sum;

. 18
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end ipr;

real procedure ip2 (ii,;?,uu,aa,bb,cc);

comment ip2 is a version of ipr which accumulates the products aaxbb in
a double-precision sum, whose final value, rounded to single-
precision, is taken as the value of ip2.;

procedure trisolv (fis,fid,fie,sis,sie,fi,si,sot,rhs,mat,piv,vip);

xglgg fis,fid,fie; integer fis,fid,fie,sis,sie,fi,si;

real sol,rhs,mat,piv; real procedure vip;

begin real tl,t2;
cohment trisolv solves-a triangular system of linear equations. The
off-diagonal part of the system's matrix is given by mat, the
diagonal part by piv, and the right hand side of the system by
rhs. The solution is developed in sof. By appropriately
setting the first five parameters, either an upper or a lower
triangular system can be treated. Column-by-column Gauss
decomposition of a matrix can be compactly expressed using
trisolv. vip is a vector inner-product routine.;
for fi := fis step fid until fie do
begin tl := -vip (si,sis,sie,sol,mat,-rhs); t2 := piv;

si := fi; sol := if t2 = 1 then tl else t1/t2;

end;
end trisolv;
Boolean finished; switch decompbranch := return,itr;
switch failures := insufficientrank,zerolambda;
integer ml,nl,npl,i,j,k,!,b,al,al,tst,20,11,201,cnt;

real lasteps,preveps,ref,s,t,cps,eta,cnor,snorm;

19
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real array Plo:n,o:n],lam,rv,sv,x,w,xr[o:n);

integer array r(o:n),ix[o:m-1];

comment The subsystem of n+l equations currently being investigated

is listed in ix[o),..., ix[n] . The other equations are listed

in the remainder of ix . r contains row indices.

Row inter-

changes during the Gauss decomposition of P are carried out

by permuiing the elements of r ;

procedure resid (vip); real procedure vip;

begin

comment resid computes those components of the residual vector Ax-d

associated with the equations not in the reference subsystem.

The sign, magnitude, and associated equation number of the

largest component are saved. vip is a vector inner-product

routine.;
ref := -1;
for § := npl step 1 until ml do
begin
i:=ix[J];
t := vip (k,0,nl,x[k],A[i,k],-d[i]);

abs (t);

if abs (t) > ref then begii ref :
al := j; s := sign (t);
end;
end;
end resid;
ml := m-1; nl := n-1; npl := n+l;

lasteps := 0; preveps := -1;

20
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for i := 0 step 1 until n do r[i] := ix[i] := i;

for i := mpl step 1 until ml do ix[i] := i;

comment The initial reference subsystem is chosen by making a copy of

the transpose of A bordered with d and carrying out a
Gaussian reduction upon it with row and column interchanges
used to select the largest possible pivot at each stage.;
begin
real array TAB[o:n,o:ml];

for j := O step 1 until ml do

begin
TAB[n,J] := d[J];

for i := 0 step 1 until nl do TAB[1,J] := A[J,1];

end;

for i := O step 1 until n do

begin
t := 0

for j :=1 step 1 until n do

begin
k :=r[j);
for £ := 1 step 1 until ml do
begin
ref := TAB[k,ix[2]]);
if abs (ref) > t then

begin s := ref; t := abs (ref); al := j; b := 2; end;

end;
end;
21
o d A + K = o ) 3 L
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if t = O then begin j := 1; go to singular; end;
k := r(at); rlat) := r[i]; 2st := r[i] := k;
k := ix[b); ix[b] := ix[i]; al := ix[i] := k;

for J := i+l step 1 until ml do

begin
L := ix[j);
ref := TAB[!st,2]/s;

for k := i+l step 1 until n do

B T T T —

begin
al := r[k];

TAB[af,2] := TAB[af,2] - TAB{af,al] x ref;
end;
end;
» |
end;
b := 0; al := 1;
comment The following segment of the program performs a column-by-column

Gaussian reduction of the matrix associated with the reference

F‘,v“”_- e ——
-

equations, forming an upper and a lower triangular matrix into

the array P . (Each diagonal element of the lower triangular

ot T T

matrix is one.) Interchanges of rows take place so that the
largest pivot in each column is employed. It is assumed that
b-1 columns have already been decomposed. If the matrix is
not of full rank, the exit insufficientrank is taken, and it

is left up to the user to determine if the given overdetermined

system can be solved exactly.;
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body:
£0 := b; L1 := b+l; 201 := b-l;

for i := b step 1 until n do

besin
£ := ix[20];

trisolv (E i=b then O else b,l,IOI,O,J-l;J,k,P[lO,r[k]],
Af r[J)=n then a[2] else A[4,r(j]],Plk,r[§]],1,1pr);
trisolv (‘0,1)!1,0’101)J,R,P[‘O,r[k]],

if r[3)=n then d[2] else A[£,r[3)),Plk,r[4]),1,ipr);

ref := O
for § t= £0 step 1 ntil n do
begin
t := P[20,r[j]];
if ref < abs (t) then begin ref := abs (t); s := t; k := j; end;
end;
if ref = O then begin j := 1; go to singular; end;
if 20 = n then go to decompbranch([all;
j :=r(k]; r(k] := r(20]; r(20] := J;
for j := #1 step 1 until n do P[20,r[j]] := P[20,r[J]])/s;
201 := 20; 20 := 21; 21 := 21+1;
end;
singular:
for i := O step 1 until n do refset[i] := ix[i];
go to failures([j];

return:

comment Solve for the lambdas.;
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trisolv (b,1,n,0,j-1,3,k,sv(k], if r[j)=n then -1 else O;

Plk,r(3]],1,1ipr);
trisolv (n,-1,0,3+1,n,J,k,lam(k],sv(J],P(k,r(J]),P(J,r(§]],ipr);
comment Compute epsilon for the reference subsystem of equations.;
t = 0;

for 1 := 0 step 1 until n do t := t+abs(lam{i]);

eps := 1/t;

comment Each new value of eps must be greater than the previous one.

If this is not so, the solution may have been "overshot".;
if eps < lasteps then go to ed;

lasteps := eps;

comment Solve for the vector x, the Chebyshev solution of the reference

subsystem of equations.;

for i := 0 step 1 until n do xr[i] := sign(lam{i]) X eps;

trisolv (0,1,n,0,i-1,1,3,wlj),xr[i],P[i,r(3)),P[4,r[1])]),ipr);

trisolv (n,-1,0,i+l,n,i,J,x[r(j]),w[i],P(i,r[j]],2,1pr);

comment x[n] should be -1 . It can Le used to purify eps and the other

components of X .;
ref := -x[n);
for i := O step 1 until nl do x[i) := x[i]/ref;

eps := eps/ref;

comment For each index ix[n+l},..., ix[m-1] compute the residual

Alix[j),0] x x[o] + ... + A[ix[j],n-1] x x[n-1] - d[ix[3]] .
If the largest of these in magnitude is not greater than eps,
go to itr to refine the vector x, for it may be the Chebyshev

solution of the full system.;
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resid (ipr);
if ref < eps then go to itr;
ovr:

k := ix[al];

comment The following linear-system solution is computed in order to

determine which equation is to be dropped from the reference
set of equations.;
trisolv (0,1,n,0,i-1,1,J,w[J], if r(i)= n then d(k]
else Alk,r[1]],P[j,r[1]],1,ipr);

trisolv (n,-1,0,i+l,n,i,J,w[3),wli},P(J,r(i)],P[i,r[i]]),ipr);

comment s is the sign of the residual with greatest magnitude. Find

the largest of the ratios w[k]/lam[k] x s . If any component

of lam is zero, the exit zerolambda is taken.;
ref := lam[n]; b := n;
if ref = O then begin j := 2; go to singular; end;
ref := w[n]/ref x s

for § := 0 step 1 until nl do

begin
t := lam[j];

if t=0 then begin J := 2; go to singular; end;
t = wlil/t x s;
if t > ref then begin b := j; ref := t; end;

end;

comment Form a new reference subsystem by exchanging the ix[af]-th

and ix[b]-th equations.;
ix{a#) := ix[b]; 1ix[b] := k; al :=1; go to body;
ed:
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comment Restore the previous reference sutsystem.;

eps := lasteps; al := 2;

J = ix[at); ix[at] := ix[b]; ix[b] := J; go to body;

itr:

lasteps := 0; cnt := O;

comment Iteratively refine the vector x;

ilp:

ent := cnt + 1; if cnt > 10 then go to insufficientrank;

cnorm := snorm <= O;
for t := 0 step 1 until n do
k := ix[i];

t := abs (x[i]);

if snorm < t then snorm := t;

* W

RO

rv[i] := -ip2 (J,0,n,x[3], if j=n then d[k] else Alk,J), -xr(i]);

end;

trisolv (0,1,n,0,i-1,1,J,rv[jlevii),P[i,r(3]1],P[1,r(1])),1p2);

trisolv (n,-1,0,i+1l,n,i,J,wlr(j]),rv(i],P[i,r([4]]),1,ip2);

igz i := 0 step 1 until n do

begin

s 1= wli];
x[i] := x[i] + s;
s := abs (s);

if cnorm < s then cnorm := s;

end;

if cnorm/snorm > eta ther. go to ilp;
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comment eta is to be preset with a small positive multiple of the largest

positive single-precision machine number w having the property
that l+w = l-w = 1 1in single-precision arithmetic. The small
multiple will depend upon the peculiarities of the machine's
rounding process and will have to be empirically determined.;

ref := -x[n]

for i := 0 step 1 until nl do x[i] := x[i]/ref;

eps := eps/ref;

comment Determine whether a Chebyshev solution has been found. If any

residual is greater in magnitude than eps while eps is smaller
than a value produced from an earlier refinement, give up, print
a warning, and return the best x computed thus far.;

resid (ip2);

+if ref < eps then finished := true

else if eps > preveps then finished := false

else begin comment Print out "DOUBTFUL SOLUTION";

g0 to skip; end;
preveps := eps; refset[n] := ix[n];

fo1 i := 0 step 1 until nl do

begin
refset{i] := ix[i];
h(i] := x[1];
end;
if — finished then go to ovr;
skip:
epz := preveps;

end Chebyshev;
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9. Sample Runs

The output reproduced in the appendix was produced by four programs

implementing the exchange method. At each exchange step the reference
set, value of ¢, values for the xi, and the non-reference residuals
were listed followed by the equations to be switched in the next exchange.
Upon termination, a count of exchanges and solution refinements (where
applicable) was printed along with the computation time required

(print time excluded). The computed Chebyshev solution for the full

system was then printed followed by the final reference set and a list

of all residuals.

»

A common data system, Ax = d, was given to the four programs.

The matrix A consisted of the 17 X 9 Hilbert matrix segment }

a (i=0,..., 16; j=0,..., 8) .

8;
i, iHjHl
The right-hand vector d had components
g, =1 (i=0,..., 16) .

Output A was prcduced by a version of the program given in
section 8 using double-precision arithmetic.

Output B was produced by a program using the techniques out-

lined in section 4. This program, however, based its computation on

the matrix

-1
B=| AT |. .. Af
h n+l
-d_ 3 3 [ -d
ll in+1 -
28
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I ¢ L3 .

rather than on the matrix C . This permits the initial

3
%— + O(ne)

operations for the calculation of the ki to be saved, for the last

column of B satisfies

( n+l
b A = Q0
Ny k,n+l ik
{ n+l
- b a = 1
K=l k,n+l ik
\

Now, however,

n+l
e =1/ kgl Ibk,n+lI

must be computed separately at each exchange. Note that, on the sample
data, this program has failed to recognize the terminal reference set,
giving the wrong answer.

The suggestion has been made that the exchange method be imple-
mented using Jordan elimination techniques, but that a section of code
be provided to clean up the solution once it has been attained. Output
C was produced by such a program. Clean-ups were carried out in double-
precision. Since this program, just as program B, failed to recognize
the final reference set at the first encounter, the clean-up section
was called upon twice for the given data set - once to put the program
back on the right track, and once for the final solution refinement.

By good fortune the final reference set was recognized the second time

around.
29
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Output D was produced by a B5500 Burroughs Extended Algol version

of the procedure given in section 8.

10. Double-Exchange Algorithm

Instead of introducing one vector into the reference set, we con-
sider the problem of introducing two vectors simultaneously. (What

follows can easily be generalized to the problem of introducing several

vectors simultaneously.)

Without loss of generality, we assume that Al,..., An+1 form a

referance set. Let xl,..., kn+1 be such that

n+l

kz=:1 Ay = O

under the normalizetion

n+l

k‘él MGy = -1 -

Then

n+l

k=

and if x 1is the Chebyshev solution for this reference subsystem,

sgn(), ) = sen(r, (x)) for k=l,..., n+l .
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For ease of notation we write

Lo <]
I

= sgn(ri(x))Ai for all i

sgn(r (x), = kal for k=l,..., ntl .

.‘
=
n

Thus

Puamn
E 4
s

n+l rEl ~
T =0 and ¢ = l/ T 3
[ L B L " i
|
r i
: We assume that L
l- lr (x)| > [r (x)] >
b - %
] 1
for some al,a2 > n+l . Since Bl""’ Bn+1 have rank n, there | B
]
| exist ! A
1 1 2 s
L ui ),---, ur(ﬁi and u§ );---, u-,(ﬁi
f
so that
“{:1 3)
B = for Jj=1, 2 . i
iL ay "k Rt
[_ The péj) will be unique if we also demand that
n+l
z dk for j=1, 2 .
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We wish to find rows A ,AB (51,32 €{1,..., n+l}) to exchange with
1 "2

o ’Aa in order to form a reference set with a greater reference

1 72
deviation ¢' . Associated with this will be a reference subsystem
Chebyshev solution x' . Demanding suitable agreement between the signs
of rk(x) and rk(x'), we may use the characterization theorem of

section 2 to determine Bl and 52 . Viz., we ask for numbers Yl

and Yo such that

nt+l
(1) (@)yg .
1%, T Yol * i; (74 = vyuy ™" - vauy )8y = 0

with

' = > =
" v;20 for jel, 2

for i=1,..., n+l

and for two indices 31,32

The normalizations of the péj) have been chosgen so that

?E%

e!=1 T'+T' +T' 1

=1 oy
32
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We wish to choose Yl’YQ under the above constraints so as to maximize

¢' « This is equivalent to determining the minimum of

n+l n+l (1) n+l

(2)

=g1‘i+yll- uk +y21-¥lu‘j ‘

Since

n+l

v
k=1 L3

is fixed, and (as can easily be shown)
e. = ¥ “19) -1>0 (§=1, 2),
we wish to determine Vl’YQ b 0 so that

Y18 * Yo%

is maximized subject to

1 2
Yl“'é )+ V2“'1£ )5 Ty, S2E E=lnaei 5 4L
33
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This is a standard linear programming problem. Note that the single-
exchange algorithm can be expressed as the above problem with the addi-

tional constraint

y2=0.

Thus the ¢' of the double -exchange can be no less than the ¢' given

by the single.exchange of section 3. Note further that conditions 1 ?

and 2 of section 3 do not appear in the development of the double - s

e exchange. j
Computation can be simplified by considering the dual to the above

linear programming problem. We introduce the surplus variables

}
i {
Z 40’ zn+3 and minimize {
n+l '
L
- i i
T subject to
zy >0 for all i,
[P
+1
L nz (v, _, .
‘ r n+2 1’
=i
and
n+l
(@)
z V4 - = e .
I L P Tk T T T %2
i
; 34
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If either surplus variable is nonzero in the solution, then Ba
1

and Ba cannot simultaneously be introduced into the reference set.
2
The correct single-exchange, however, is then readily obtainable from

the dual problem solution.

In section 16 are presented some timing results from a program
implementing this algorithm. Comparing these results with those from
the single-exchange implementations of sections 13-15, we see
that the extra effort involved is not paid for by a net reduction in
time. Also we have observed that in practice rather less than half
of the exchange steps carried out permit the simultaneous switching

of two reference equations.

11. Computational Comparisons of Variations for the Exchange

In the procedure given in section 8,the non-reference equation
chosen to enter the reference system at each exchange was the ath,

whose residual satisfied

(a) lra(x)l = iﬁ(refe?:§ce set",}lri(x)| )

indices

According to the theory, however, the exchange method will converge so
long as the reference deviation after each exchange exceeds the refer-
ence deviation before. And for this to be true, it is sufficient only
that o satisfy |ra(x)| > |e] (conditions 1 and 2 given section

3 being assumed always to hold).
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Alternate versions of the procedure presented in section 8 were
prepared for Stanford's B5500 wherein the few statements determining
o according to (a) were changed for statements implementing other
selection rules. The unaltered procedure and the alternates, together
with an implementation of the double-exchange method described in
section 10, were run on random systems of equations of several sizes.
Averages of times required and number of exchanges made are given. Note
that the procedure of section 8 gave the most favorable times.

12. The Data

Data for the comparison runs was generated by a procedure written

in Burroughs Extended Algol. The procedure produced a matrix

i=0,- eey m"l

A= [a,,)

J=°,ao L3 ] n'l

-y
and a vector
d = [di] i=°,lol, m-l

each of whose elements had the form € X T, where & was a pseudo-
random variable distributed approximately uniformly in the interval

[0, +1), as computed by the mixed congruential method

go=o

1

< g, = (21 - 3 + 211527139 moa 2%

for n>1 ,
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! and T was chosen pseudo-randomly from among the numbers

s, 871, +872, 4872, .1, 871, .87%, .87,

Every decision rule was applied to ten system, each of m equations

in n wunknowns, where

G———
*

(m,n)c{(lo,h),(20,“),(30,“),(hO,h),(20,9),(30,9),(&0,9),(30,19)}.

et

15. Selection of the Equation with Largest Residual Magnitude

r—
. The procedure given in section 8 produced the following statistics
(w = mean; o = standard deviation):
Time Required (Seconds)
m n L 9 19
10 u=0.677
l 0=0.110

20 B=1.079 |u=k.0k43

[ 0=0.142 [0=0.850

30 u=l.2h6 u=5-9h7 u=28.6?0

0=0.236 |o=1.170 [o=6.802 !

40 u=1.558 |u=7.265

37
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Number of Exchanges

b 9 19
10 u=3.40

o=1.56

20 u=5.90| u=9.10

o=1.61| 0=3.05

30 u=5.90| p=13.40 [ 4=16.80

0=2.21| o=3.64 o=5.21

40 | 4=6.70| u=14.60

o r—

0=2.10| =5.16

- A e

14k. Selection of the First Suitable Equation Found |

w

The first variant program examined each non-reference equation in .
hi turn until one was found whose residual magnitude exceeded the reference
deviation. That equation was selected for introduction into the ref-

erence system. Statistics for this variant follow.
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10

20

30

Lo

10

20

30

Lo

Time Required (seconds)

19

u=0.813

g=0.261

g=0.638

u=7.561
o=2.788

u=2.122

c=0.97h

w=11.303

0=2.699

p=63.785
o=30. 424

w=2.181
0=0.606

p=lh-252

o=5.458

Number

of Exchanges

19

u=5.60

0=3.98

u=13.10

0=9.69

o=10.83

g=13.32

p=36, 40

o=10.43

“=h8.60

0=26.04

u=2lo 80

c=8.83

u=h7' 60

0=21.30
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15. Selection So As to Give the Greatest Reference Deviation Increase

Given any non-reference row A for which lra(x)l > |e|, solve

Then, if B 1is such that

sen(e) sen(r_ (x) g

‘s
is maximal, Ad must replace Ai in the reference set. The new
B
A's can be computed as follows:
U
A=A, - — g (178)
i i B

Then
Xe Aa
el = L2 1 ol + @ - LBy 1o,
where
Tl
K = Al
=t
4o
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Using these results, a variant of the procedure given in section 8
was prepared in which the non-reference equation selected to enter the

reference system at each exchange was that one which would give the

greatest value to

10

20

30

Lo

Time Required (seconds)

19

u=00 821

0=0.187

p=1l.315

o=0. 327

w=5.900
o=1.886

u=1.528

0=0.313

u=9.798
g=2.423

u=b2. 481

o=7.921

u=2.l§h

0=0. 465

u=lu.685

0=3.82%
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10

20

30

Lo

Number of Exchanges

19

u=3.50

o=1.36

u=h. 60

o=1-7h

u=8 .10

o=2.84

u=3.90
o=1.04

u=10. 40

o=2.20

W= 1.6 .20

0=3.03

u=5. 10

o'—'lu 70

=3.23

16. Double-Exchange Algorithm

T

- m
'y 10
) 20
-

I -
]: Lo
T

L

i

— —

’ 1\\ t

Time Required (seconds)

19

u=0.900

u:ll 258

0=0.215

p=l.557
0=0.836

u=lu M&?

o=0.271

p=6.487

0=0.951

u=36.650
0=8.179

p=1.912

0=0.677

p=9. 413
o=1.507

Lo




~ g

.

EEM Ty B - -

™ .

Number of Exchange Cycles*

i
F lo u=2.h0 )
|
o=1.02
lh c=ln§8 a=1080
[ 30 u=3.60 p=8.10 p=1h.7
[. c':l-36 O'=1070 O'=uo67
Lo u=5.10 u,=12.1+
l.. F}oah °=2036
{
{
*
l (An exchange cycle consisted of the simultaneous switching of two
= equations where possible. Otherwise it consisted o>f a standard single-

[ exchange. )
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(5]

(6]
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weees HILBERT DATA tesee

17 EQUATIONS IN 9 UNKNOWNS

EXCHANGE ALGORITHM IN DOUBLE=PRECISION

REFERENCE SeT:
0 2 11 1 S 16 3
1,65566,11074,00287,19989,63¢
3,97047,60096,43108,06759,27€
4,55974,74511,68592,81444,7380
«3,26294,80229,02832,31393,356¢
1,20427,47950,72163,13981,29¢
©2,48030,00464,27790,08801,450
2.87782,84818,63886,24654,6160
=1,75788553710,63890,56612,908
4,39490,84805,13472,43622,048
©2,57761,12267,27838,37828,008
1.,07571,35978,74505,82246,036
1.00245,84291,63795,29485,8230
1,95676,92968,81866,18250,250
2,UB8292,91781,18352,39794, 148
1,98447,14020,05852,36957,668
3,46169,10322,94211,82277,2980
EXCHANGE EQUATION

REFERENCE SET:
0 2 14 1 5 16 k)
3,29205,02104,33056,37236,260
5,40554,73215,77523,85646,178
«3,59146,43813,84385,18429,928
5.53749,90812,11901,92471,0680
®4,17859,65144,44931,34071,220
1,52049,75007,12577,52825,278
«3,09350,90379,71150,66375,608
3,55123,22422,42775,98985,698
©2,14895,91603,99356,68537,18¢€
5,32811,40323,12399,568580,086
=1,04056,72051,91559,43804,8R0
©2,27328,65222,76318,77735,800
«1,08864,60005,98963,99208,988
=«3,91191,80148,65456,42774,210
=1,34090,31468,42742,36611,820
5.51335,12173,87940,65038,29e
4,64657,18263,68794,95518,658
EXCHANGE EQUATION

REFERENCE SET1
0 2 14 1 5 16 3

NP O NOOVWW

2t 8 83 0 0 @
NN WwW

-3

11 WITH EQUATIO

~NOPD O NOVWW

-3

9 WITH EQUATIO

]
a
s
s
]
s
s
s
=
s
]
s
s
s
s
]
s
N

]

4

4

)

EPS
Xt 0)
Xt 11
Xt 21
Xt 31
Xt &}
Xt 51
Xt 6)
Xt 7)
xt 81
RESIOUALL
RESIOUALCL
RESIOUALL
RESIDUALL
RESIOUALL
RESIOUVALL
RESIOUALL

14

Xt 0)
Xt 1)
Xt 21
xg 3]
Xt 4}
Xt 3)
Xt 6)
Xt 71
Xt 8)
RESIDUALL
RESIDUALL
RESIDUALL
RESIDUALL
RESIDUALL
RESIDUALL
RESIDUALC
11

i1

$,30006,47%585,98979,14408,7080 «3 = EPS
3 = X[  0)

6.27879,92051,09165,06026,788

10)

6)
12}
13)
14)
13)

7)

10)

6)
12)
13)
11}
13)

T S O SRR i

- v




©4,09612,36199,45232,02513,460
6,67733,07627,41189,48351,2340
=l ,04706,7643R,19307,65657,348
1,67565,40534,98R19,77968,690
«3,38355,28056,64260,96258,72¢
3.,85958,25436,908084,77619,200
2,32292,40280,66317,48340,800
5.73256,79224,06205,97422,590@
=2.,61547,83860,89942,20876,970
=0,406861,93560,47416,28225,158
*4,10282,78390,15665,83395,498
6,41483,00155,73710,43478,4080
2.,485990,96575,45078,62499,500
5,20435,98784,03175,26575,976
2,53687,03218,72219,94661,2880

TERVINATION

NUMBER OF EXCHANGES MADE WAS
TIME IN SECON(CS = Seu8

SOLUTION VECTOR?
6.,27879,92051,00165,06026,7860
=8,09612,36190,45232,02513,466€
6.,67733,07627,41189,48351,340
°l4,64706,76438,19307,65657,34%
1.67565,40534,98819,779048,690
*3,38355,28056,64260,96258,7260
3,85958,25436,98984,77619,2980
=2,32292,40280,66317,48340,8080
5.732%8,79224,06205,97422,59€@

W W EWWWNDO®OD®»ENOW

NOODOR NN W

RESIDUALC
RESIDVALL
RESTOUALC
RESIDUALC
RESIDUALL
RESIDUALC
RESIDUALL

Xt 01
xt 1)
Xt 21
Xt 31
Xt 4)
Xt 5)
Xt 6)
Xt 7
xXg 8}

10)
6)
121
13)
9]
131
71




REFERENCE SET:
c 2 14 1 5 16 3

RESIDUALS?
5,30006,47585,99232,20639, 300
©9%,30006,47585,98899,13948,560
5,30006,47585,99232,20639, 300
*5,30006,47565,98677,09488,070
5.30006,47585,99232,20639, 300
«5,30006,47585,99176,69524,170
«8,00861,93560,47416,28225,15¢
2,53687,03218,72219,94661,28¢
5.30006,47585,08054,65063,6488
2.48599,96575,45978,62499,509
=2.61547,83860,899482,20876,970
«5,30006,47585,99232,20639,300
=4,10202:78390,15665,08339%5,4080
6,41483,00155,73710,43478,400
5,30006,47585,98899,13948,560
5.,20435,98784,03175,26%575,0780
*5.30006,47585,909287,71754,420

-3
=3
-3
=3

3
3
3
*3

Sk
*3
=3
-4
=3
=3

48

11

RESIDUALL
RESIDUALL
RESIOUALL
RESIDUALL
RESIDUALCL
RESIOUALL
RESIDUALC
RESIDUALC
RESIDUALC
RESIOUALC
RESIOUALL
RESIOUALC
RESIDUALC
RESIDUALL
RESIOVALL
RESIOUALC
RESIDUALL

— e £




etovae HILBERT DATA ewens , B

17 EQUATIONS IN 9 UNKNOWNS

TABLEAU=JORDAN ALGORITHM

COMPUTATION:

REFERENCE SET! ,
0 2 11 | ‘5 16 3 8 4 9

ePS = 1,655523068330=03
Xt 0) = 3,967545797508403
Xt 1) = =2,70186705478040%

l Xt 2) = 4,557296022670406

: XU 3) = =3,261422535880+07

2 Xt 4) = 1,2037794129960404 .

l XU S5) = =2,479392868420408 ,
X{ 6) = 2,07688384861040AR ;
Xt 7) = =1,757363248270408

,' X{ 8) = 4,393718637020407
RESIDUALL 10) = =2,593994140630=03
RESIDUALL 6) = 1.,129150390638=0J
RESIDUALL 312) = 1,001358032230=02

] RESIDUALL 13) = 1,95732116699002

3 RESIDUALL 14) = 2,4875640R6910=02

. RESIDUALL 15) s ,987075805668=02

l RESIDUALL 7) = 3.,509521484388=03

L EXCHANGE EQUATION 14 WITH EQUATION 11

REFERENCE SET!
0 2 14 1 5 16 k| 8 4 9 1

l Xt 0) = 5,304102722120403 f
= XC 1) = =3,584534690988408
Xt 2) = 5,9249640466300404
, Xt 3) = =4,171726764020407
| XU 4) = 1,518164465350408
Xt 5) = =3,0890518808204+08
XU 6) = 3,5486402234550408
| Xt 7) = =2,146187334570+08
Xt 8) = 5,321560977128+07
RESIDUALCL 10) = =1,0467520206908=02
. RESIDUALL 6) = 2,136230468758=04
RESIDUALL 12) = =1,065063476560=02
RESIDUALCL 13) = =3,570556640630=03 :
RESIDUALC 11) = =1,312255859388=02 4
RESIDUALL 15) 2 S.7067871094008«03 1
RESIDUALL 7) = 4,8522949218R8=0) 4
EXCRANGE EQUATION 11 WITH FQUATION ¢ :

REFERENCE SET:
0 2 14 -1 S 16 3 8 &4 11

— o e




—!

EPS = 5,274902555220=03
Xt 0) = 6,259571972106403
Xt 1) = =4,084668078720+0%
Xt 2) = 6,660130004700406
X{ 3) = =4,635957755860407
X( 4) = 1,6719115615984+08

XU 5) = =3,37645239754A408

X{ 6) = 3,851934333776408

Xt 7) = =2,318558082033.08

X{ 8) = 5,722328674500407
RESIDUALL 10) “2.47192387813P=03
RESIDUALL o) *4,02832031250R=03
RESIDUALL 12) “4,150390625000=03 ;
RESIDUALL 13) B.544921875000=04 '
RESIDUALL 9) 2.716064453130=03 |
RESIDUALL 15) 5.401611328138=03 !
RESipuALL 7] 2.8686523437560=03 '
EXCHANGE EQUATION 15 WITH EQUATION 14

REFERENCE SET1
0 2 15 1 5
EPS = 5,2869561664060-0)
X{ 0) = 6,266837272300403
Xt 1) = *4,089030849650408%
Xt 2) = 6,666739045000406
2
1
4
t
B

16 3 8 4 11 1

P dend 4

XU 3) = =4,64026138664004+07 L
Xt 4} 1,6733780649704+08 24
X[ 5) = =3,37902482171804+08
Xt 6) 3,854966854230408
Xt 7) = =2,320300230040+08
Xt 8) S:7264463471004+07
RESIOUALL 10) *2,7160644%3130«03
RESIDUALL 6) = =4,425048R28130<03
RESINUALL 12) =4,0893554687508=03
RESIDUALL 13) G8,5776347168750a0
RESIDUALL 9) 2¢38037109375%-
RESIDUALL 14) 5,249023437506" )3
RESIDUALL 7) 7.8076171R75008=03

TERMINATION
NUMBER OF EXCHANGES WAS 3

bt Bed

¢

o




= T =

[rm— ——— _—
N ) 0

TIME IN SECONDS = Te1P
SOLLTION VECTORI
Xt 0) = 6,266837272300403
Xt 1) = =4,0R90308496584+05
X{ 21 = 6,666739045000406
Xt 3) = =4,5402638B66u00407
XU 4) = 1,673370004976@4+0A
X{ 9] = =3,379.082171E840R
Xt 6) = 3,850966854230408
X{ 7) = =2,320300230048408
X{ B8) 3 5,726446347100407
F
)" .J B '.f"" 3
1 o R o

o1

e v g
L.
y -

N

S e M G S s




REFERENCE SET3
o 2 15 1 5 16 K} 8 4 11

RESIDUALS!?

RC 0) = 5,030549329630=01
RL 1) = 5 ,422996449086-03
R{ 2) = 5,213819480858=03
RL 3) = =%5,371528525158~03
R{ 4) = 5,21255879778€=03
RL 5] = ~5,294128506530=013
RL 6) = *4,35175706136€=03
R( 7)) = 2,577717493356=03
RL R) = $5,2955514154856=03
RL 9) = 2,441709321218=03
R({ 10) = =2,67697239932R=03
R[{ 11) = *5,355667924336=03
R[{ 12) = =4,13586084108603
R{ 13) = 6.37302%899A08=04
R[ 14) = 5,322239438788=03
Rl 15) = 5,242799588250=03
R[L 16) = =5,260471501408=03

e ———. ol SR
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svwas HILAERT DATA seewe
17 EQUATIONS [IN 9 UNKMOUWMS
TABLEAU=JNRDAN ALGORITHM WITH CLEAN=UPS

COMPUTATINNS

REFEREMNCE SET1

0 2 11 1 S 16 3 8 4 9

EPS = 1,65552306R33€=0)

Xt 0) =2 3,94754579750P+03
Xt 1) 3 =2,7018470547F14405
Xt 21 = 4,557290A02267F+04
Xt 3) = «3,241622535886407
XL 4) = {,20377C41299R+08
XC 5) = ®2,47939286Ru?M (AR
XU 6) = 2,676488384841240H
Xt 7)) =2 =1,75736324R27140R8

X{ A) = 4,3937186370,2407

RESIDUALL 10) «2,59399414063F=03
RESIDUALL o) 1:12015030043°7=03
RESIOUALL 12) 1.001390032223F=0?
RESIDUALL 132 1.79732116650R=02
RESINUALL 14) D UR7SANREN v
RESINUALL 1% 1eOR7O78ENS6H =02
RESIDUALL 7)Y = 3,5095,14843RF=03
EXCHANGFE FQUATIOV 14 ¥W[TH FQUATION 11

REFERENCE SFET;
0 2 14 1 5 16
?

EPS = 3,2831031470783=03
X{ 0) = 5,3%410272212¢+03
X{ 1) = =3,58453449N087.08
XC 2) = 5,926964466300406
XC 3] = =4,17172676402%407
xX{ 4) = {,5181A446535¢40P
Xt 5] = =3,0R800516580R82,+08
X[ 6) 3  3,54640223455w+0R

Xt 7) ®2,14A10873345704+08

Xt 8) §,321569097712F+07

RESIOUALL 10) = =1,046752929698=02
RESIOUALL 6) = 2.13623046875004
RESIDUALL 12) = =1,0650034765A0<02
RESIDUALCL 13) ©3.5705%6640630=03
RESIOUALL 11 *1:3122%58593A8=02
RESIDUALC 15) s 5,706787109400-03
RESINDUALEL 7)) = 04,8527049218R0=03

"EXCHANGE EQUATION 11 WITH EQUATION 0

REFERENCE SET!
0 2 14 1 5 16 3 8 a1

-
[« ]
S
©

Nt T Tl st i




EPS = 5,274902555220=0)

Xt 0) = 6,259571972100+03

Xt 1) = =4,08466R07A72k405

Xt 2) = 6,66013000470+406

X[ 3) = =4,A35957755R6€407

Xt 4) = 1,67191156159P«0N8

X{ S) =3 =3,37445239754r4+08

Xt 6) = 3,8519343337764+0R

Xt 7) = =2,31R55R082030408

X{ 8) = 5,72232R67450¢407
RESINDUALL 10) = =2,47192387261368-03
RESINDUALL 6) = =4,02832031250P=03
RESIDUALL 12) *4,15039062500€=03

ReHN0U921AR75000=04
2.716064453130=01)
5,4N01611328136=01
?¢B8BA5234375P=0)

15 WITH EQUATION

RESIDUALL 13)
RESIDUALL 9)
RESINUALCL 5]
RESIDUALL 7] =

FXCHANGE EQUATION

14 3

REFERENCE SET:

0 2 15 1 5 16 3 8 q 11
FPS = 5,28695616846R=03 .
Xt 0) = 6,2668372723064+03
Xt 1) “4,0R0030R4965£405 {
Xt 21 6,64673904500R406
Xt 3] =) ,60025386H64064+407
x{ 4) 1.67337406497240R
Xt 5) *3,379024R21718640A8
Xt 6) 3,85496485423r 408
Xt 7) 2,3720300230048408
x{ 8) 5.726484634710R4+07
RESIDUVALL 10) “2,716044453138=0)3
RESIDUALL 6) “h,425048R281308=0)
RESIGUALL 312) *4,0R9355468750=0)
RESINDUALL 13) 4,577636718750.04
RESINUALL 93 2,3R0371093750=0)
RESTIDUALL 14) 50249023437500=03
RESIDUALT 71} 2,807617187500=03

i O R

-,

t

DOURLF=PRECISINN [MPRNVEMENT

m

°

w
i e A

REFFRENCE SETs
0 2 15 1 S 16 3 8 & 1
5.27844560693,62039,H11635150 =3
6,26576018467,8B0947,904R1» 138
=4 ,CBR29, 1RVUT, 34084s0N0 1A, 4R
6,66547,14708,78323,27085,978
=4,6393400Ri832,7R%90,9985hH» 310

3 =Xt 0}

5

6

4
1,67302,98250,5R417,633721,998 8

8

8

8

7

3

Xt 1)
Xt 2)
X¢ 3)

LI B B NN BN BN BN BN BN BN |
»
~—

4)
*3,37853,623415,23599,23504,0098 Xt 5) 4
3.85414+13353,25437,64000,6R8 Xt - 6) A
«2,31979,H1579,50R57,744A6,80R Xt 71 .
5,72519,98266,81440,61070,730 Xt 8) %

«2,62825,04150,30675,135%9,670 = RESIDUALL 103

54
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= i =&

e I

o4, 37417 ,FRARD,24TTHI19506,1P
©4,CU29A0,6379R,4RS512:16AN2, 24P
7.,29110,4998R,2ANU2,AT4HA0,1AR
20“555000476691914‘8.6777“'1‘0.
5.39090.96101.1676101'0‘331-‘13°
2.50408,84901,42729,98680,720
EXCHANGING EQUATINN

-3
-3
-/}
-3
=3
-3

RESINUALT
RESTOUALL
RESIOUALL
RESINUALL
RESINUALC
RESIDUALL

15 WITH EQUATION 14

61
12}
13)

91
14)

n

IMPROVEMENT COMPLETE = SOLUTION NOT YET ATTAINED

REFERENCE SET:
16 0 2 8 1 (]

FPS = %,33%5006772150=03

Xt 0) = 6,271517680100403

Xt 1) = =4,091349270098,0%

Xt 2) = 6,660674302908406

Xt 33 = =4,641881114704407

X{ &) = 1,67384270496R4+08
= =3,3R001744455A4+08
e 3,8556R6242240408
= =2,3206573830104+08

xt 8) 5,727176281400407

1

RESIDVALC
RESTIDUALC
RESIDUALC
RESIDUALC
RESIDUALC
RESIDUALL

10)
6)
12)
13)
9)
15]

*2:9907226562508=03
*4,516401562500-03
°4,42504R828138=01
4.272460937500=04
2.197265625000=03
5,035400390630-03
?2.197245625000=03

RESINUALL 7)
DOUBLE=PRECISION IMPROVEMENT
REFERENCE SET:

16 0 2 8 1 4 11 3
$.,30006,87%85,99124,11354,720 =)
6,27879,92051,09148,0902R,688 3

«8,00612,36199,45217,874R0,480 5§
6,67733,07627,41163,914904,088 6
»8,04706,7643R,19289,03505,148 7
1,67565,40534,98812,94035,71 8
*3,38355,2R056,64247,14797,908 8
3,085958,25434,98969,13231,21® 8
®2,32292,40280,66308, 18506280 8
5,73258,79224,06183,385u2,490 7
©2,61547,83R60,00108,747222:348 =3
w8 ,80861593560,46417,08)'. 2929308 =3
«4,10282,78390,15554,011A5,240 =3
6,41083,00158,764R5,997 34,658 =4
2,48599,06575,45023,11 4R, 380 =3
$.,20435,98784,03230,770601,0008 =3
2053657'03215p7?775005512’519 =3
TERVINATION
NUMBER OF EXCHANGFS WAS 3
NUMBER OF SOLUTION REFINCMENTS WAS
55

1

2 B 0 B N 8 N 0 8RN N BN S0~

L 4

Xt 0}
Xt 1)
Xt 2)
Xt 3)
Xt 4)
Xt $S1
Xt 6)
Xt 7)
Xt 8)
RESIDUALC
RESIDUALC
RESIDUALL
RESINUALC
RESIDUALC
RESIDUALL
RESIDUALC

101
61
12)
13]
9)
15}
7)

. . et e, Jot

A LA

L e 0 siiedbestccmentt
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TIME IN SECONDS s 7.22

SOLUTINN VECTNR1

Xt
x(
x(
x{
xt
x(
v
x(
x(

0)
1)
2)
3)
4)
S)
6)
7]
81}

6,27087992091004+03
“4,000123619050405
6,677330762000406
“4,667067643820407
1,6756540535CR4+08
«3,38155780%670408
3,859582543690408
=2,322924028060408
5,732587922400407

56
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— p=n pey —

REFERENCE SHT1

16 0 ° A | u 11
RESTNUALS?
RE 0) = 5,1406R16067 14403
RL 1) = =S,41A00106409R-N1
RE 2) 3 S,10008117460RR<0
RL 3) = *5,40401307A09R=01
RL 4) 3 5,2037:20524724-03
RE S) 3 =5,3A77034205% =03
R{ 6) 5 =4,4R91372346% =03
R( 7) 8 2,462450000067=03
RL B8) = 5,230000727300=02
RE 9) & 2,4013742521724=0)
RE 10) = =2,876117087RKM=0)
RE 11) = =5, 3K7|{RP752655::0)
Rl 12) =2 =~4,154581161R19%=N3
R[{ 13) 3 5,9N0306B8449R0 ="y
RL 14) =2 5,2%1417998%9:.0]3
R{ 18) 3 S§,18RNN39AONCUL-N]
R{ 16) = =5,34433A14R220=03

S i

14

=
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eeves HILBERT DATA wowee

17 EQUATIONS IN 9 UNKNOWNS
GOLUB=RARTELS PROCEDURE
COMPUTATIONS
REFERENCE SETs

] 2 11 1 5 16 3 8 4 9
EPS & §,6038740968000«03

X(C 0) = 3,95476513672040)3
XU 1) = =2,694271884770405
X( 2) = 4,5458690589840+06
Xt 3) = =3,254013444530407
X(C 4) = 1,201271768236+08
Xt 5) = =2,4746115662364+08
Xt 6) = 2,871708030230+08
Xt 7) s =1,7543948392020+08

Xt 8] » 4,3867101476504+07

RESIDUALL 10) = =2,655020296880=03
RESIDUALL 6] = 1.,129150390630=03
RESIDUALL 12] = 1,007461547858=02
RESIOUALL 13) = 1,968765258798=02
RESIDUALL 14) = 2,496337890630=02
RESIDUALL 15) = 1.995086669920=02

RESINDUALL 7] = 3,631501796880=03
EXCHANGING EQUATION 11 WITH EQUATION 14

REFERENCE SETS
0 2 14 1 S 16 3 0 4 9
EPS = 3,27942767739R=03

Xt 0) = 5,39426611328€+03
XU 1) = =3,584947485358+05
Xt 2) = 5,027948390608+06
Xt 3) = =4,17255830410R407
Xt 4) = 1,51850098514+08
Xt S5) = =3,089782861770+08
X 6) = 3,5472769504684+08
XU 7) 3 =2,14673064690R+08

Xt 8) = 5,322939958210+07

RESIDUALL 10) = =1,046752929698=02
RESIDUALL 6) = =6,103515625008=05
RESIDUAL[ 12) = =1,089477539060=02
RESIDUALL 13) = =3,875732421880=0)3
RESIDUALL 11) = =1,324462890630=02
RESIDUALL 15) = 5,7067687109406=03
RESIDUALL 7] 4,943847656250=03
EXCHANGING EQUATION 9 WITH EQUATION 11

REFERENCE SETS
0 2 14 1 5 16 3 8 4 11
EPS = 5,30913757°200=03
XU 0] = 6,276373046900403
Xt 1) = =4,09471R295898+05

58




[ e I e

xt 2)
xt 3)
X{ &)
xt 3)
Xt o)
xt 7)
X( 8) =
RESIDUAL
RESIOVALL
RESIOVALC
RESJOUALC
RESIDUALC
RESIDUALI
RESIDUALL

JTERATIVE

REF INED V
EPS L 50
Xt 0}
X(+ 1)
Xt 2)
Xt 3)
Xt 4]
xt S5)
Xt 6)
xt 7]
Xt 8) =
RESIDUALCL
RESIDUALC
RESJDUALC
RESIDVALS
RESIDUALL
RESIDUALC
RESIDUALL

TERMINATI

NUMBER OF
NUMBER OF

6,675281306600406
*4,648779785740407
1,675231013130408
»3,382768370590408
3,858754992000408
=2,3224604688970408
S.731517357208+07
10] ©“2¢593994140630-03
6) ©4,394531250000«0)
12) “4,150390625000=03
13) 6,40869140630P=04
9) 24532958984380~013
15) 5.035400390630=03
7] 2.2888183593088=013

IMPROVEMENT

ALUES?
30006475R8590-03
6,27H7992051084013
=4,096123619950+05
6,6773307628004+064
“4,647067643820407
1.,675654053500+08
=3,38355280567¢+08
3,8595825436904+08
*2,322924028069+08
5.732587922400+07
10] 2,676117987880«03
6] *4,4891372346968=03
12) “4,1508116184908=013
13) 5.903068449808=04
9) 20421378252320=03
15) 5¢158003969800=03
7] 2.46245600966¢=03

ON

EXCHANGES MADE WAS 2
SOLUTION REFINEMENTS WAS

29

B

B



TIME IN SZCONDS = 3,10

SOLUTJON
xX( 0) =
Xt 1) =
Xt 2) =
X( 3) =
Xt 4) =
x{ 5) =
Xt 6) =
x{t 7] =
Xt 8) s

VECTORY
6,2768799205100403
“l,0961236199564+08
6,677330762800406
=y ,647067643820407
1,675654053500408
*3,3335528056760+08
3,859582%43690+08
®2,322924028060+408
5,732587922400+07
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REFERENCE SET!
0 2 14 1 5 16

RESIDUALS!

Rt 0) = 5,14068166714¢=03
R{ 1) = =5,43694106409€<03
Rt 2) = 5,18006117448&=03
RE 3) = =5,40693307699€=03
R{ 4) = 5,203720524726=03
RE 5) = =5,387783422536=03
RL 6) = =4,489137234690-03
Rt 7) s 2,06245600966€=03
R{ 8) = 95,23089072730€<=03
RL 9) = 2,421374252120-03
R{ 10) s =2,67611798788€=03
RC 11) = =5,357182752656=03
R 12) = =4,156811618490=03
R{ 13) = 5,903068449808=04
RC 14) = 5,25141799559@=03
RC 15) = 5,158003969806=03
R{ 16) = =5,344336148220=03
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Erratum: Insert in §8 before the Algol 60 procedure CF STI

: of Computer Science Report No. 67, Stanford
i A . University.

.
\ {; The parameters to procedure Chebyshev are:

ol
&

i& identifier type comments

< 1
.

m integer Number of equations.

n integer Number of unknowns.

: % A real array Matrix of coefficients.

Array bounds - [0:m~1, O:n-1].

d real array Right-hand-side vector.
@ Array bounds - [0O:m=1].
h real array Solution vector.

Array bounds - [0:n-1].

refset integer array Final reference equation numbers.
Array bounds ~ [O:n].

epz real Final reference deviation.
zerolambda label Exit for condition 1 failure.
insufficientrank label Exit for condition 2 failure,

or in case rank(A) < n .

The parameters m, n, A, and d are not changed by Chebyshev.
We direct the user's attention to the identifier eta appearing in the

procedure and to the comment expluining its value and purpose.
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